Heap

Time Limit: 5000ms
Memory Limit: 131072KB
This problem will be judged on PKU. Original ID: 3214
64-bit integer IO format: %lld      Java class name: Main

Description

A (binary) heap is an array that can be viewed as a nearly complete binary tree. In this problem, we are talking about max-heaps.

A max-heap holds the property that for each node than the root, it’s key is no greater than its parent’s. Upon this we further require that for every node that has two children, key of any node in the subtree rooted at its left child should be less than that of any node in the subtree rooted at its right child.

Any array can be transformed into a max-heap satisfying the above requirement by modifying some of its keys. Your task is find the minimum number of keys that have to be modified.

Input

The input contains a single test case. The test case consists of nonnegative integers distributed on multiple lines. The first integer is the height of the heap. It will be at least 1 and at most 20. Then follow the elements of the array to be transformed into a heap described above, which do not exceed 109. Modified elements should remain integral though not necessarily nonnegative.

Output

Output only the minimum number of elements (or keys) that have to be modified.

Sample Input

3
1
3 6
1 4 3 8

Hint

   1                 10
/ \ / \
3 6 =====> 3 9
/ \ / \ / \ / \
1 4 3 8 1 2 4 8

Source

Language: 
Theme: 
Share Code? 

Powered by NB231 | Current Style: .